Лямбда зонд автомобилей УАЗ принцып работы
Автолюбитель пошел нынче грамотный – даже владельцев стареньких «Жигулей» не удивишь заморскими словечками ABS, ESP, Jetronic, катализатор, инжектор, лямбда-зонд... Последний термин, правда, больше волнует владельцев иномарок. Случается, в автомобиле вдруг «тяга» упала, он стал есть бензин: как не в себя, опять оштрафовали за СО, а причина всего этого неизвестна. На СТО мастера скажут: «Лямбда сдохла», предложат ее заменить, но цены! А не поможет, тогда что? Среди знакомых никто толком не знает, как к «лямбде» подступиться: «вещь в себе»... Действительно, лямбда-зонд – штука загадочная, но все же давайте попробуем в этой загадке разобраться.
Зачем нужен лямбда-зонд на УАЗ
Жесткие экологические нормы давно узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе – катализаторы) – устройств, способствующих снижению содержания вредных веществ в выхлопных газах. Катализатор вещь хорошая, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси обеспечить катализаторам «долголетие» невозможно – вот тут и приходит на помощь датчик кислорода, он же О2-датчик, он же лямбда-зонд (ЛЗ).
Название датчика происходит от греческой буквы l (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива, l равна 1 (график 1). «Окно» эффективной работы катализатора очень узкое: l=1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда.
Избыток воздуха в смеси измеряется весьма оригинальным способом – путем определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. На некоторых современных моделях автомобилей имеется еще один лямбда-зонд. Расположен он на выходе катализатора. Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора (рис. 1).
График 1. Зависимость мощности двигателя (P) и расхода топлива (Q) от коэффициента избытка воздуха (l)
Полное сгорание и максимальная мощность достигается при l=1.
Рис. 1. Схема l-коррекции с одним и двумя датчиками кислорода двигателя
1 – впускной коллектор; 2 – двигатель; 3 – блок управления двигателем; 4 – топливная форсунка; 5 – основной лямбда-зонд; 6 – дополнительный лямбда-зонд; 7 – каталитический нейтрализатор.
Принцип работы лямбда-зонда (датчик кислорода)
Лямбда-зонд действует по принципу гальванического элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх нее напылены токопроводящие пористые электроды из платины. Один из электродов «дышит» выхлопными газами, а второй – воздухом из атмосферы (рис.2). Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300 – 400оС. Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения.
При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков (положения дроссельной заслонки, температуры охлаждающей жидкости, числа оборотов коленвала и др.). Особенностью циркониевого лямбда-зонда является то, что при малых отклонениях состава смеси от идеального (0,97 Ј l Ј 1,03) напряжение на его выходе изменяется скачком в интервале 0,1 - 0,9 В (график 2).
Кроме циркониевых, существуют кислородные датчики на основе двуокиси титана (TiO2). При изменении содержания кислорода (О2) в отработавших газах они изменяют свое объемное сопротивление. Генерировать ЭДС титановые датчики не могут; они конструктивно сложны и дороже циркониевых, поэтому, несмотря на применение в некоторых автомобилях (Nissan, BMW, Jaguar), широкого распространения не получили.
Для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев. Нагревательный элемент (НЭ) расположен внутри керамического тела датчика и подключается к электросети автомобиля (рис. 3).
График 2. Зависимость напряжений лямбда-зонда от коэффициента избытка воздуха (l) при температуре датчика 500-800оС
А – условная точка средних показаний (Uвых » 0,5 В, при l=1,0). (Обогащение смеси (уменьшение О2 в выхлопе). Обеднение смеси (увеличение О2 в выхлопе).
Рис. 3. Конструкция датчика кислорода с подогревателем
1 – керамическое основание; 2, 8 – контакты НЭ; 3 – нагревательный элемент (НЭ); 4 – твердый электролит ZrO2 с напыленными платиновыми электродами; 5 – защитный кожух с прорезями; 6 – металлический корпус с резьбой крепления; 7 – уплотнительное кольцо;
9 – выводы датчика.
Неисправности ЛЗ лямбда-зонда если врет
В этом случае ЭБУ начинает работать по усредненным параметрам, записанным в его памяти: при этом состав образующейся топливно-воздушной смеси будет отличаться от идеального. В результате появится повышенный расход топлива, неустойчивая работа двигателя на холостом ходу, увеличение содержания СО в отработавших газах, снижение динамических характеристик, но машина при этом остается на ходу. В некоторых моделях автомобилей ЭБУ реагирует на отказ лямбда-зонда очень серьезно и начинает так рьяно увеличивать количество подаваемого в цилиндры топлива, что запас горючего в баке «тает» на глазах, из трубы валит черный дым, СО «зашкаливает», а двигатель «тупеет» и на ближайшую СТО вам, скорее всего, придется добираться на буксире.
Перечень возможных неисправностей лямбда-зонда достаточно большой и некоторые из них (потеря чувствительности, уменьшение быстродействия) самодиагностикой автомобиля не фиксируются. Поэтому окончательное решение о замене датчика можно принять только после его тщательной проверки, которую лучше всего поручить специалистам. Следует особо отметить, что попытки замены неисправного лямбда-зонда имитатором ни к чему не приведут – ЭБУ не распознает «чужие» сигналы, и не использует их для коррекции состава приготавливаемой горючей смеси, т.е. попросту «игнорирует».
При сгоревшем или отключенном лямбда-зонде содержание СО в выхлопе возрастает на порядок: от 0,1 – 0,3% до 3 – 7% и уменьшить его значение не всегда удается, т. к. запаса хода винта качества смеси может не хватить. В автомобилях, система l-коррекции которых имеет два кислородных датчика, дело обстоит еще сложнее. В случае отказа второго лямбда-зонда (или «пробивки» секции катализатора) добиться нормальной работы двигателя практически невозможно.
Вообще лямбда-зонд – наиболее уязвимый датчик автомобиля с системой впрыска. Его ресурс составляет 40 – 80 тыс. км в зависимости от условий эксплуатации и исправности двигателя. Плохое состояние маслосъемных колец, попадание антифриза в цилиндры и выпускные трубопроводы, обогащенная топливно-воздушная смесь, сбои в системе зажигания сильно сокращают срок его службы. Применение этилированного бензина категорически недопустимо – свинец «отравляет» платиновые электроды лямбда-зонда за несколько бесконтрольных заправок.
Рис. 2. Схема датчика кислорода на основе диоксида циркония, расположенного в выхлопной трубе
1 – твердый электролит ZrO2; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – «сигнальный контакт»; 6 – выхлопная труба.
Рис. 4. Контактные выводы наиболее распространенных циркониевых лямбда-зондов
а – без подогревателя; б, с – с подогревателем.
* цвет вывода может отличаться от указанного.
Замена лямбда-зонда на похожие циркониевые датчики
Рекомендованный заводом-изготовителем лямбда-зонд и сходные по конструкции циркониевые датчики взаимозаменяемы. Возможна замена неподогреваемых датчиков на подогреваемые (но не наоборот!). Однако при этом может возникнуть проблема несовместимости разъемов и отсутствия в машине цепи питания для нагревателя лямбда-зонда. Недостающие провода можно проложить самостоятельно, а вместо разъема использовать стандартные автомобильные контакты.
Цветовая маркировка, распиновка выводов лямбда-зондов может различаться, но сигнальный провод всегда будет иметь темный цвет (обычно – черный). «Массовый» провод может быть белым, серым или желтым (рис. 4). Титановые лямбда-зонды от циркониевых легко отличить по цвету «накального» вывода подогревателя – он всегда красный. При замене 3-контактного лямбда-зонда на 4-контактный необходимо надежно соединить с «массой» автомобиля провод заземления подогревателя и сигнальный «минус», а накальный провод подогревателя через реле и предохранитель подключить к «плюсу» аккумулятора.
Подключение напрямую к катушке зажигания нежелательно, т. к. в цепи ее питания может стоять понижающее сопротивление. Подключиться к контактам топливного насоса достаточно сложно. Лучше всего подключить реле подогревателя лямбда-зонда к замку зажигания.